Natural Refrigerant Training Summit

Building a Sustainable Workforce

CO₂ Transcritical Systems: Focus on High Pressure Expansion Valve Operation

Bruce R. Hierlmeier P.E.

Zero Zone, Inc.

Natural Refrigerant Training Summit Thank you to our sponsors!

Premium Sponsors

Basic Sponsors

North American Sustainable Refrigeration Council (NASRC)

Mission Create sustainable future for supermarket refrigeration by removing barriers to natural refrigerant adoption

- **501c3**Non-Profit Organization
- **150+** Members
- **51,000+** Food Retail Locations

Goals

- Build sustainable workforce
- Increase funding options
- Increase education & awareness

Natural Refrigerants

Carbon Dioxide R744

> Propane R290

Ammonia R717

Need help? Look for NASRC staff!

Danielle Wright
Executive Director

Morgan Smith
Program & Communications Director

Jeanne Ackerman

Membership & Communications

Coordinator

YOUR ENERGY EDUCATION STARTS HERE

Our Energy Education Centers in Irwindale and Tulare offer online and in-person classes to help you advance your career in clean energy, and make better energy decisions for your home or business.

Sign up for a free class or join our email list.

Visit us at sce.com/classes or scan the QR code.

Before we get started...

- Please make sure you sign in by the door
- To receive an electronic certificate for this training:
 - Complete the survey at the end of the session
 - Share your name and email at the end of the survey

Your Presenter

Bruce Hierlmeier

Director or Regulatory Compliance and

Refrigeration Technology

Zero Zone, Inc.

Today's Agenda

- Company Introduction
- Safety
- CO₂ Component Overview
- Pressure Enthalpy Diagram and the High-Pressure Expansion Valve
- CO₂ System Designs
- Questions

Learning Objectives

- Understand safety concerns when working with CO₂ and proper PPE
- Understand the role of the high-pressure valve and flash gas in system efficiency
- Understand the designs used to protect against system over pressurization

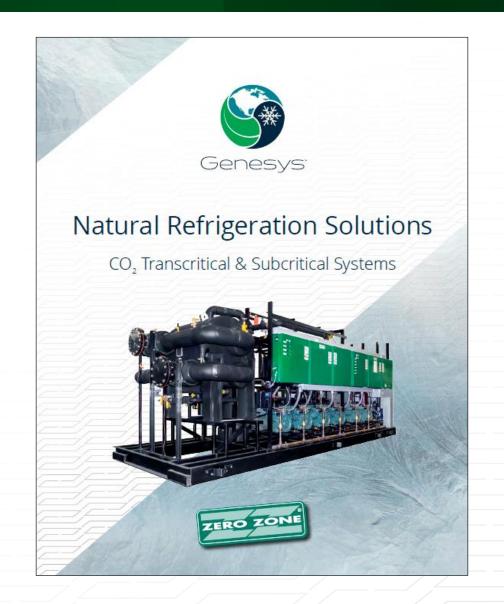
Display Cases & Refrigeration Systems

We've Always Been Green™

Refrigeration Systems

ZERO ZONE

- Outstanding Engineering Support
- Customer and Field Support
- Ease of Serviceability
- Longevity of Equipment
- Custom Solutions



Genesys

Display Cases

CRYSTAL MERCHANDISER*

- It is important to know that all refrigerant gases could be fatal simply by a lack of oxygen through air displacement.
- Most refrigerant gases including CO₂ are denser than air, so they tend to collect near the floor.

- CO₂ is not only an asphyxiant gas; it's also a narcotic agent which reduces awarness of the danger.
- Our breathing rate is controlled by CO₂ levels in our blood. The higher the level, the faster we breathe it in.

Effects of CO₂ Over Exposure

- A lack of oxygen is caused when Carbon Dioxide replaces air. When larger amounts of CO₂ are present, a narcotic effect is to be expected. Smaller amounts of CO₂ in the air typically target the respiratory system. Symptoms can include irritation of the nasal passages, throat, and eyes—as well as induce coughing.
- Consequences of elevated CO₂ levels in the air (results based on normal healthy adults)
 - 0.04% Normal atmospheric concentration (400 ppm)
 - 2% Breathing rate increases by 50% (2000 ppm)
 - 3% At 10 minutes exposure; breathing rate increases by 100%
 - 5% Breathing rate increases by 300%, headache and sweating may begin after about an hour. (5000 ppm)
 - 8-10% After 10 to 15 minutes exposure, the onset of symptoms such as headache, dizziness, buzzing in the ears, increased blood pressure, high pulse rate, excitation, and nausea will appear.
 - 10-18% After only a few minutes, cramps similar to epileptic fits, loss of consciousness, and shock (i.e., a sharp drop in blood pressure) will occur. Victims should recover very quickly in fresh air.
 - 18-20% Symptoms are similar to those of a stroke.

Safety Placards

NFPA:

- For CO₂ HEALTH = 2,
 FLAMMABILITY = 0,
 INSTABILITY = 0,
- For R-404A HEALTH = 2,
 FLAMMABILITY = 1,
 INSTABILITY = 0

Personal Protection Methods

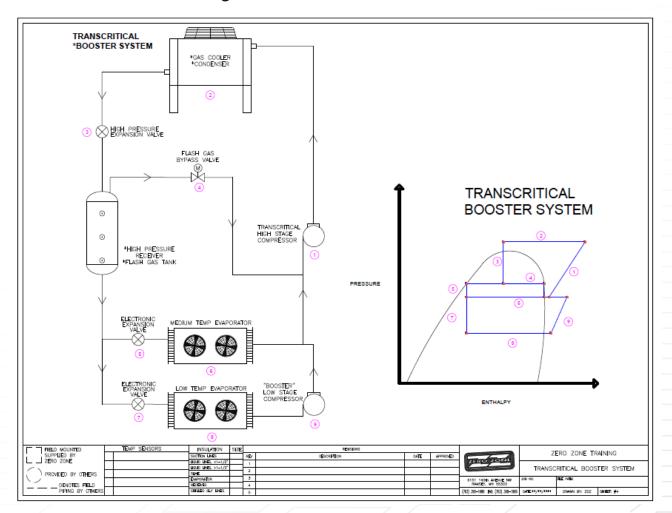
- Due to the high pressures encountered, greater awareness needs to be exercised around CO₂ systems.
- Safety glasses, face shields, long sleeves, and gloves are needed to prevent an encounter with a jet of hot, high pressure discharge gas or being hit with a blast of dry ice.
- Closing off lines containing liquid CO₂ will cause pressure in the line to rise over
 1000 psi causing a possible rupture.
- Depressurizing lines containing liquid will make dry ice plugs. If heat is then applied at the wrong spot, the line may rupture.
- Numerous relief valves on the system are a blast hazard or could cause fright if relieving unexpectedly.

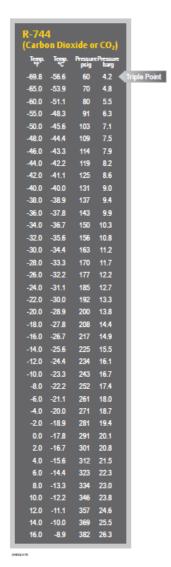
PPE Minimum

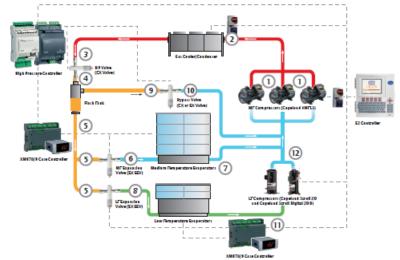
- Minimum Requirements:
 - For standard operations such as making adjustments and using standard diagnostic equipment.
 - Safety Glasses with side shields
 - Long sleeve shirt or jacket
 - Safety shoes with leather tops
 - Leather or mechanics gloves

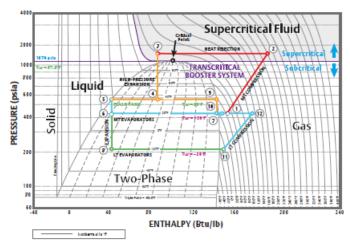
PPE Higher Risk operations

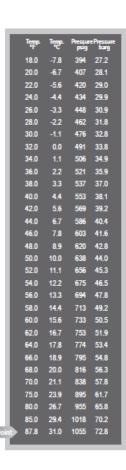
- Higher risk operations include operations such as :
 - Charging the system
 - Opening pipes of unknown pressure
 - Opening pipes where liquid may be present
 - Initial system start up
- PPE for higher risk operations include:
 - All minimal PPE previously discussed
 - Face shield
 - Cryogenic rated apron
 - Cryogenic rated gloves


- **Transcritical:** System may gas cool above 88°F or may operate in subcritical mode. It depends on the weather.
 - Single stage one compressor (saturated suction needs to be above 0°F).
 - Can be two compressors a lower pressure compressor (booster) pumping gas into a high stage compressor.
 - Evaporator Direct expansion or liquid overfeed.
 - May include energy efficient components like ejectors and parallel compressors.
- Gas Cooler/Condenser: Cools high stage compressor discharge gas.
- High Pressure Valve: (HPEV) drops pressure from condenser/gas cooler to flash tank pressure. Keeps pressure high in the gas cooler/condenser -similar to a back pressure valve.
- Flash Tank: Operates like a receiver and accumulator.
- Flash Gas Valve: (FGBV) controls pressure in flash tank similar to a back pressure valve.

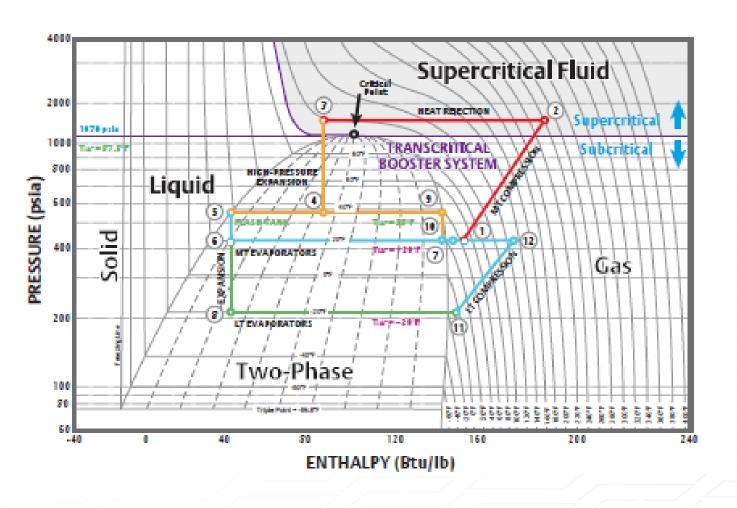

- Parallel Compressor: A compressor that runs in parallel to the high stage compressor but at a higher suction pressure than the high stage compressor.
- Ejector: Similar to garden hose sprayer where passing fluid sucks up a gas or a liquid.
- **Electronic Expansion Valve:** EEV for short, expands liquid CO₂ into the evaporator.
- Adiabatic condenser/gas cooler: Water is sprayed on pads that are on the inlet air going to the condenser/gas cooler. Evaporating water cools the air.


Basic System Architecture



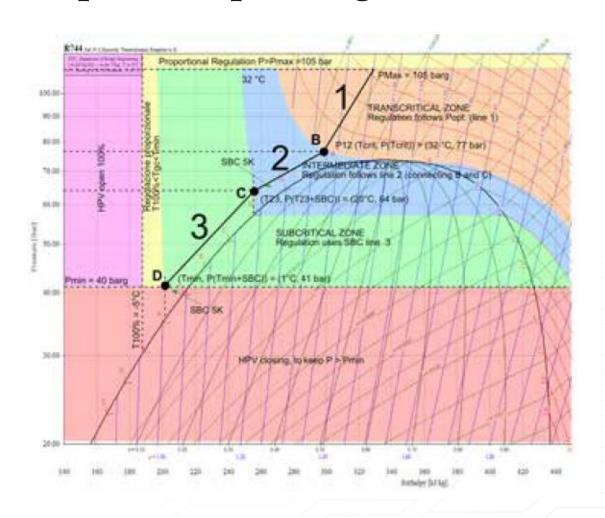


Typical CO₂ Transcritical Booster System



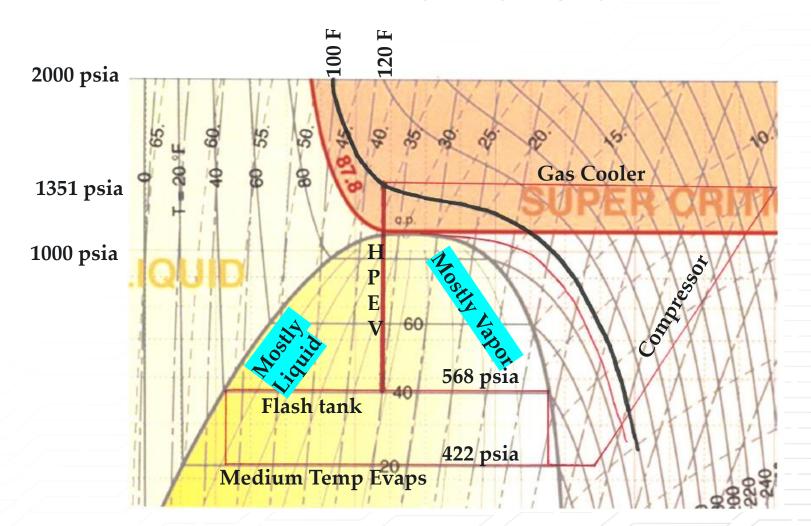
- Info on a PH Diagram
 - Pressure
 - Enthalpy (Energy)
 - Temperature
 - Liquid
 - Vapor
 - % Mix of Liquid and Vapor
- Construction is connecting dots

- Using a PH Diagram
- Optimal Operating Point
- Minimize Flash Gas
- Comparing System Efficiency
- Optimal Operating point



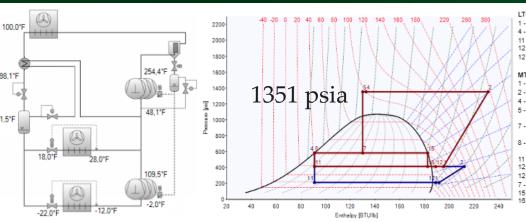
Using a PH Diagram

Optimal Operating Point



The optimal transcritical
 operating point balances
 increased energy from high
 discharge pressure with less
 flash gas.

Carel +4000038EN


Minimize Flash Gas

Comparing System Efficiency

Bitzer Software

LT	-St	
4	2	0

- 4 11 Expansion
- 11 Evaporation
- 12 1 Superheat suction line

MT-Stage

- 1 2 Compression
- 2 4 Gas cooling/Condensation
- 4 5 IHX Subcooling
- Expansion to intermediate pressure
- 7 8 Intermediate receiver: liquid
- 8 11 Expansion to evaporation
- 11 Evaporation
- 12 1 Total superheat
- 7 15 Intermediate receiver: gas outlet 15 - Expansion to evaporation
- 16 pressure

Result	Limits	Technical Data	Dimensions	Information	D	Ocumentation	Trainings	
T-Stage:	Tentative D	ıata			11			
		gas temperature at	least 50°C (122°I	F)				â
	Power cons	sumption at compre	ssor inlet.					•

COP/EER Evaporator: 4.72

Compressor	LT-Stage	2GSL-3K	2FSL-4K	2FSL-4K
Frequency compressor	-	69.0 Hz		-
Evaporator capacity	149.0 kBtu/h	46.5 kBtu/h	51.3 kBtu/h	51.3 kBtu/h
Evaporator mass flow	684 lb/h	-		-
Ratio		31.2 %	34.4 %	34.4 %
Power input	9.06 kW	2.93 kW	3.06 kW	3.06 kW
Current	16.43 A	5.10 A	5.66 A	5.66 A
Voltage range		440-480V	440-480V	440-480V
Mass flow	1508 lb/h	470 lb/h	519 lb/h	519 lb/h
Total superheat	19.90 °F	19.90 °F	19.90 °F	19.90 °F
Discharge gas temp. w/o cooling	109.5 °F	112.6 °F	108.1 °F	108.1 °F
Compressor	MT-Stage	4FTE-30K	4GTE-20K	4GTE-20K
Frequency compressor	-	62.0 Hz		
Evaporator capacity	229 kBtu/h	88.8 kBtu/h	70.0 kBtu/h	70.0 kBtu/h
Evaporator mass flow	1052 lb/h	-		-
Ratio		38.8 %	30.6 %	30.6 %
Gas cooler capacity	662 kBtu/h	257 kBtu/h	203 kBtu/h	203 kBtu/h
Gas cooler mass flow	3024 lb/h	-		-
Power input	70.9 kW	26.5 kW	22.2 kW	22.2 kW
Current	101.2 A	39.1 A	31.0 A	31.0 A
Voltage range		440-480V	440-480V	440-480V
Mass flow	6666 lb/h	2586 lb/h	2040 lb/h	2040 lb/h
Flashgas mass flow	2839 lb/h			
Total superheat	30.0 °F	30.0 °F	30.0 °F	30.0 °F
Discharge gas temp. w/o cooling		250 °F	257 °F	257 °F
optimal high pressure	1351 psia			

1-2 Compression

4 - 11 Expansion

MT-Stage

220

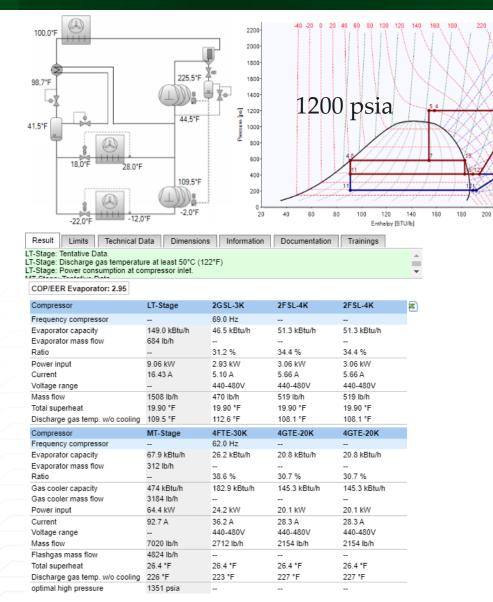
11 - Evaporation

1 - 2 Compression

4 - 5 IHX Subcooling

pressure

12 - 1 Superheat suction line


2 - 4 Gas cooling/Condensation

Expansion to intermediate

7 - 8 Intermediate receiver: liquid outlet
8 - 11 Expansion to evaporation pressure
11 - Evaporation
12
12 - 1 Total superheat

7 - 15 Intermediate receiver: gas outlet 15 - Expansion to evaporation

Comparing System Efficiency

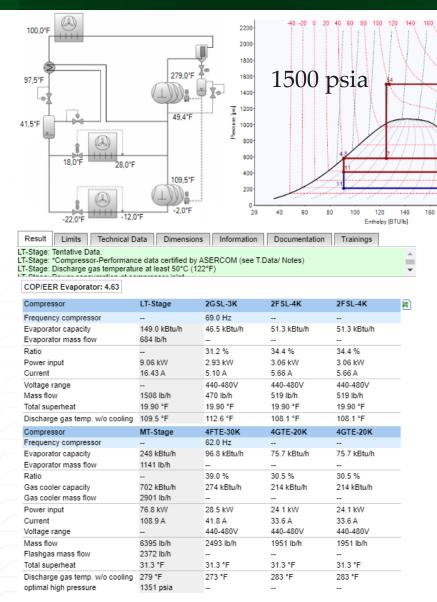
LT-Stage 1 - 2 Compression

MT-Stage 1 - 2 Compression

180

4 - 11 Expansion

11 - Evaporation


pressure
7 - 8 Intermediate receiver: liquid outlet
8 - 11 Expansion to evaporation pressure
11 - Evaporation
12 - 1 Total superheat

12 - 1 Superheat suction line

2 - 4 Gas cooling/Condensation 4 - 5 IHX Subcooling 5 - 7 Expansion to intermediate

7 - 15 Intermediate receiver: gas outlet 15 - Expansion to evaporation 16 pressure

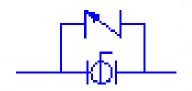
Comparing System Efficiency

Optimal Operating Point

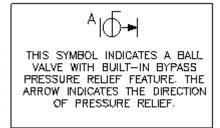
Low Temp				
Gas cooler pressure	1351 psia	1200 psia	1500 psia	
COP	4.72	2.95	4.63	
Evaporator capacity	149.0 kBtu/h	149.0 kBtu/h	149.0 kBtu/h	
Evaporator mass flow	684 lb/h	684 lb/h	684 lb/h	
Power input	9.06 kW	9.06 kW	9.06 kW	
Current	16.43 A	16.43 A	16.43 A	
Mass flow	1508 lb/h	1508 lb/h	1508 lb/h	
Total superheat	19.90°F	19.90°F	19.90°F	
Discharge gas temp. w/o cooling	109.5°F	109.5°F	109.5°F	

Optimal Operating Point

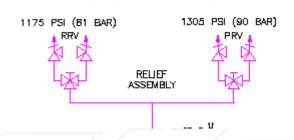
 The optimal transcritical operating point balances increased energy from high discharge pressure with less flash gas.



Medium Temp					
Gas cooler pressure	1351 psia	1200 psia	1500 psia		
COP	4.72	2.95	4.63		
Evaporator capacity	229 kBtu/h	67.9 kBtu/h	248 kBtu/h		
Evaporator mass flow	1052 lb/h	312 lb/h	1141 lb/h		
Gas cooler capacity	662 kBtu/h	474 kBtu/h	702 kBtu/h		
Gas cooler mass flow	3024 lb/h	3184 lb/h	2901 lb/h		
Power input	70.9 kW	64.4 kW	76.8 kW		
Current	101.2 A	92.7 A	108.9 A		
Mass flow	6666 lb/h	7020 lb/h	6395 lb/h		
Flashgas mass flow	2839 lb/h	4824 lb/h	2372 lb/h		
Total superheat	30.0°F	26.4°F	31.3°F		
Discharge gas temp. w/o cooling	254°F	226°F	279°F		
Optimal high pressure	1351 psia	1351 psia	1351 psia		

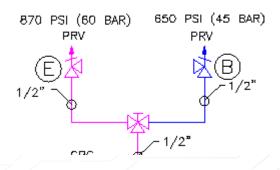


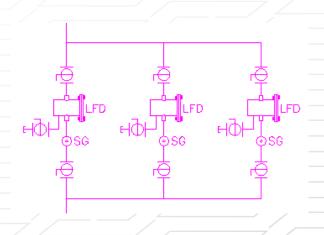
High Pressure Safety


Back check valves

Integral back check ball valves

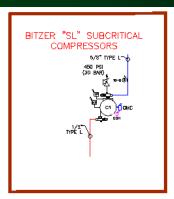
Regulating relief valves

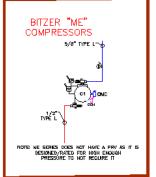


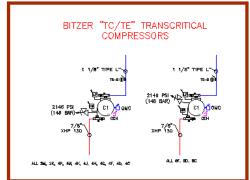


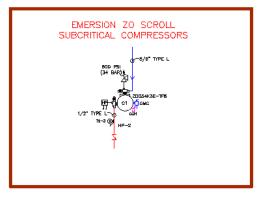
High Pressure Safety

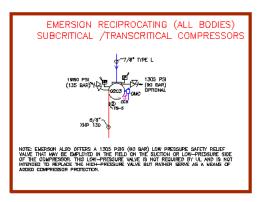
Relief valves for servicing

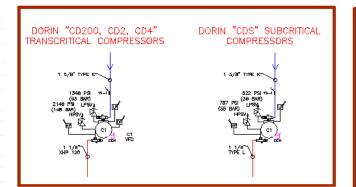

Administrative controlled component isolation

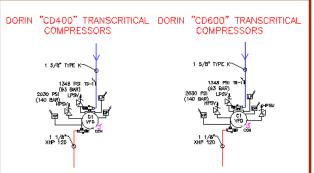


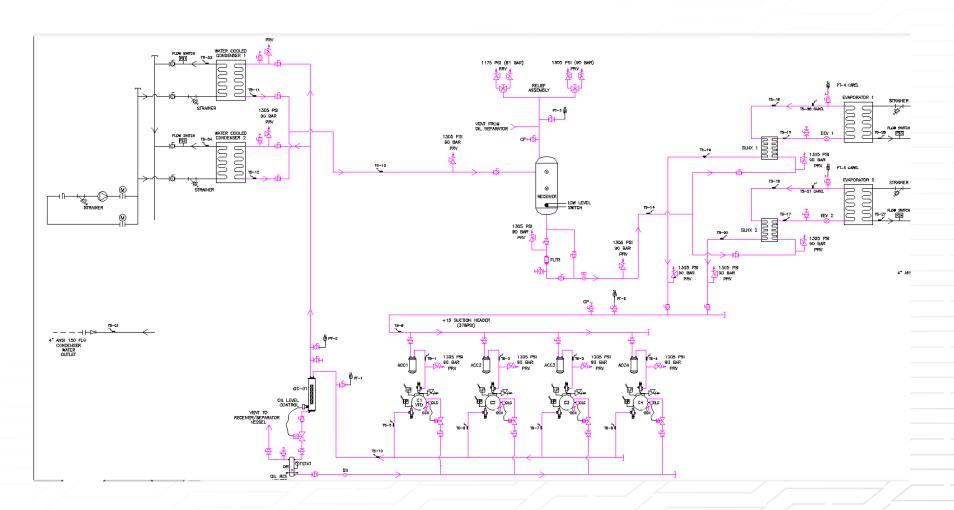


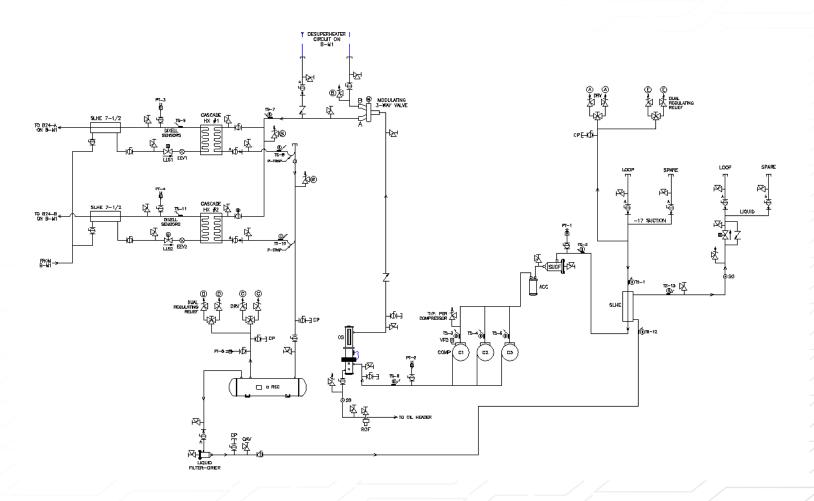



Compressor Safety Valves

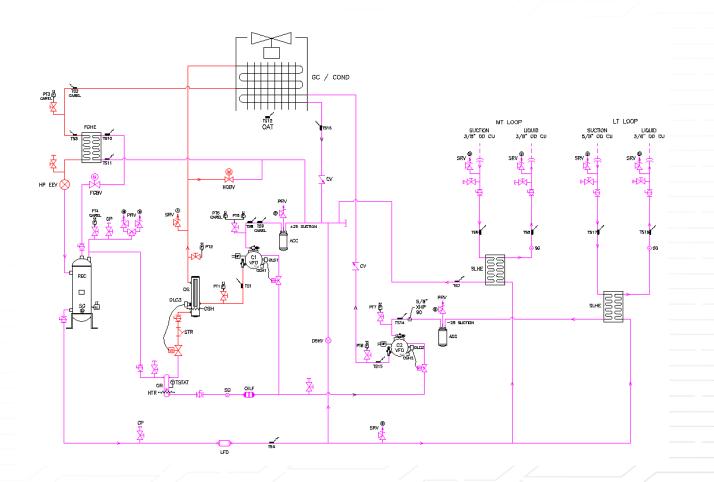




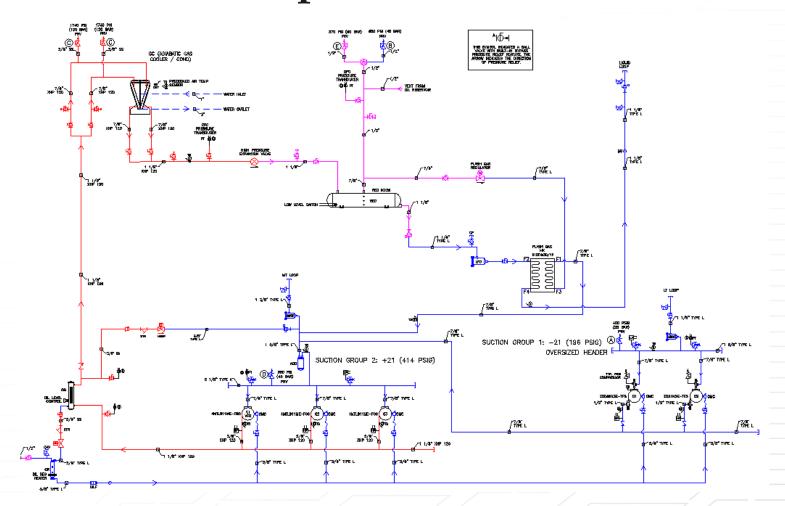




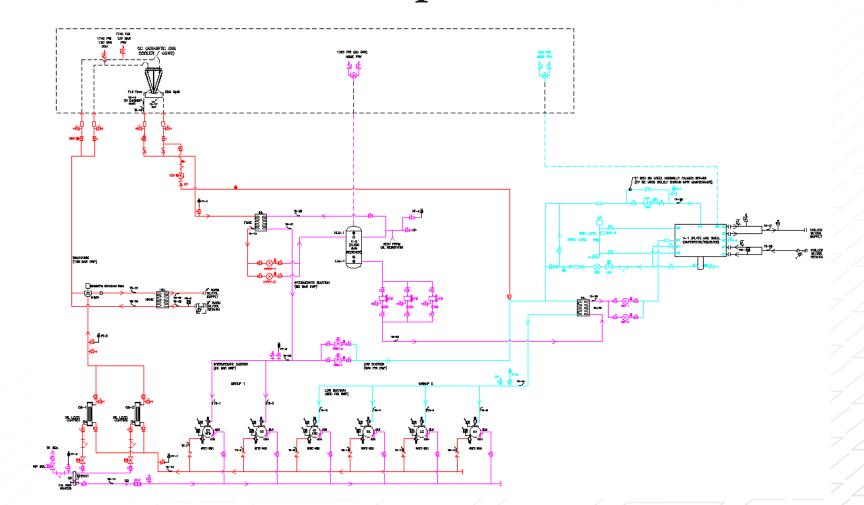
Subcritical – Water-Cooled



Subcritical – Cascade



Transcritical – Desuperheater



Transcritical – No Desuperheater

Transcritical – Parallel Compression

That's All Folks

Thank you for attending

Questions?

Share Your Feedback!

To receive an electronic training certificate:

- 1. Scan or visit nasrc.org/session-surveys
- 2. Provide your name and email at the end of the survey

Please Note: You will not receive a certificate unless you share your name on the survey form.

CO2 Transcritical Systems: Focus on High Pressure Expansion Valve Operation

Bruce R. Hierlmeier P.E.

Zero Zone, Inc.

